Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
BMC Infect Dis ; 22(1): 846, 2022 Nov 12.
Article in English | MEDLINE | ID: covidwho-2115737

ABSTRACT

BACKGROUND: African countries stand out globally as the region seemingly least affected by the COVID-19 pandemic, caused by the virus SARS-CoV-2. Besides a younger population and potential pre-existing immunity to a SARS-CoV-2-like virus, it has been hypothesized that co-infection or recent history of Plasmodium falciparum malaria may be protective of COVID-19 severity and mortality. The number of COVID-19 cases and deaths, however, may be vastly undercounted. Very little is known about the extent to which the Tanzanian population has been exposed to SARS-CoV-2. Here, we investigated the seroprevalence of IgG to SARS-CoV-2 spike protein in two Tanzanian rural communities 1½ years into the pandemic and the association of coinciding malaria infection and exposure. METHODS: During a malariometric survey in July 2021 in two villages in north-eastern Tanzania, blood samples were taken from 501 participants (0-19 years old). Malaria was detected by mRDT and microscopy. Levels of IgG against the spike protein of SARS-CoV-2 were measured by ELISA as well as IgG against five different antigens of P. falciparum; CIDRα1.1, CIDRα1.4 and CIDRα1.5 of PfEMP1 and GLURP and MSP3. RESULTS: The seroprevalence of SARS-CoV-2 IgG was 39.7% (106/267) in Kwamasimba and 32.5% (76/234) in Mkokola. In both villages the odds of being seropositive increased significantly with age (AOR = 1.12, 95% CI 1.07-1.17, p < 0.001). P. falciparum malaria prevalence by blood smear microscopy was 7.9% in Kwamasimba and 2.1% in Mkokola. 81.3% and 70.5% in Kwamasimba and Mkokola, respectively, showed recognition of minimum one malaria antigen. Residing in Kwamasimba was associated with a broader recognition (AOR = 1.91, 95% CI 1.34-2.71, p < 0.001). The recognition of malaria antigens increased significantly with age in both villages (AOR = 1.12; 95% CI 1.08-1.16, p < 0.001). Being SARS-CoV-2 seropositive did not associate with the breadth of malaria antigen recognition when adjusting for age (AOR = 0.99; 95% CI 0.83-1.18; p = 0.91). CONCLUSION: More than a third of the children and adolescents in two rural communities in Tanzania had antibodies to SARS-CoV-2. In particular, the adolescents were seropositive but being seropositive did not associate with the status of coinciding malaria infections or previous exposure. In Tanzania, natural immunity may have developed fast, potentially protecting a substantial part of the population from later variants.


Subject(s)
Antibodies, Viral , COVID-19 , Malaria, Falciparum , Adolescent , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Young Adult , Antibodies, Viral/blood , Antigens, Protozoan , COVID-19/epidemiology , Immunoglobulin G , Malaria, Falciparum/epidemiology , Pandemics , SARS-CoV-2 , Seroepidemiologic Studies , Tanzania/epidemiology
2.
Acta Parasitol ; 67(3): 1335-1342, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2048519

ABSTRACT

PURPOSE: The objective of this study was to estimate the prevalence of malaria and Covid-19 by PCR and serological tests in febrile patients in Lomé. METHODS: A cross-sectional study was conducted from September 1 to October 31, 2020 in febrile patients ≥ 10 years in three health facilities in Lomé. Finger stick blood was collected to detect Plasmodium spp. using thin/thick smear and venous blood on EDTA tubes to test for malaria Histidin-Rich-Protein-2 antigen using rapid diagnostic tests (RDT) and SARS-CoV-2 antibodies specific immunoglobulin (Ig) M and G. Detection of SARS-CoV-2 in nasopharyngeal samples was performed by rRT-PCR using GeneXpert. RESULTS: A total of 243 participants (61.7% of female) with median age 28 years (IQR 18-41) were included in the study. Prevalence of malaria was 25.1%, 95% CI [19.8-31.0] and 30.4%, 95% CI [24.7-36.7] for thin/thick smear and rapid malaria test, respectively. Eighteen patients (7.4%, 95% CI [4.4-11.5]) were positive for SARS-CoV-2 and forty-two (17.3%, 95% CI [12.8-22.6]) were positive for IgM and/or IgG against SARS-CoV-2. SARS-CoV-2 IgM seroprevalence was significantly higher in malaria RDT positive participants (33.8% vs. 10.1%, p < 0.001). CONCLUSION: This study confirms a possible cross-reactivity between Covid-19 and malaria in case of single use of rapid tests, suggesting a possible past contamination. In case of clinical signs related to Covid-19 in malaria-endemic areas, PCR screening should be requested in order to identify and isolate patients.


Subject(s)
COVID-19 , Malaria , Adolescent , Adult , Antibodies, Viral , Antigens, Protozoan , COVID-19/diagnosis , COVID-19/epidemiology , Cross-Sectional Studies , Female , Humans , Immunoglobulin M , Malaria/diagnosis , Malaria/epidemiology , Prevalence , SARS-CoV-2 , Sensitivity and Specificity , Seroepidemiologic Studies , Togo/epidemiology , Young Adult
3.
Vaccine ; 40(37): 5494-5503, 2022 09 02.
Article in English | MEDLINE | ID: covidwho-2016161

ABSTRACT

In recent years, several advances have been observed in vaccinology especially for neglected tropical diseases (NTDs). One of the tools employed is epitope prediction by immunoinformatic approaches that reduce the time and cost to develop a vaccine. In this scenario, immunoinformatics is being more often used to develop vaccines for NTDs, in particular visceral leishmaniasis (VL) which is proven not to have an effective vaccine yet. Based on that, in a previous study, two predicted T-cell multi-epitope chimera vaccines were experimentally validated in BALB/c mice to evaluate the immunogenicity, central and effector memory and protection against VL. Considering the results obtained in the mouse model, we assessed the immune response of these chimeras inMesocricetus auratushamster, which displays, experimentally, similar pathological status to human and dog VL disease. Our findings indicate that both chimeras lead to a dominant Th1 response profile, inducing a strong cellular response by increasing the production of IFN-γ and TNF-α cytokines associated with a decrease in IL-10. Also, the chimeras reduced the spleen parasite load and the weight a correlation between protector immunological mechanisms and consistent reduction of the parasitic load was observed. Our results demonstrate that both chimeras were immunogenic and corroborate with findings in the mouse model. Therefore, we reinforce the use of the hamster as a pre-clinical model in vaccination trials for canine and human VL and the importance of immunoinformatic to identify epitopes to design vaccines for this important neglected disease.


Subject(s)
Leishmania infantum , Leishmaniasis Vaccines , Leishmaniasis, Visceral , Th1 Cells , Animals , Cricetinae , Dogs , Humans , Mice , Adjuvants, Immunologic , Antigens, Protozoan , Cytokines , Dog Diseases , Epitopes, T-Lymphocyte , Leishmaniasis, Visceral/prevention & control , Mice, Inbred BALB C , Spleen
4.
Front Immunol ; 13: 837443, 2022.
Article in English | MEDLINE | ID: covidwho-1742219

ABSTRACT

An ideal protective vaccine against SARS-CoV-2 should not only be effective in preventing disease, but also in preventing virus transmission. It should also be well accepted by the population and have a simple logistic chain. To fulfill these criteria, we developed a thermostable, orally administered vaccine that can induce a robust mucosal neutralizing immune response. We used our platform based on retrovirus-derived enveloped virus-like particles (eVLPs) harnessed with variable surface proteins (VSPs) from the intestinal parasite Giardia lamblia, affording them resistance to degradation and the triggering of robust mucosal cellular and antibody immune responses after oral administration. We made eVLPs expressing various forms of the SARS-CoV-2 Spike protein (S), with or without membrane protein (M) expression. We found that prime-boost administration of VSP-decorated eVLPs expressing a pre-fusion stabilized form of S and M triggers robust mucosal responses against SARS-CoV-2 in mice and hamsters, which translate into complete protection from a viral challenge. Moreover, they dramatically boosted the IgA mucosal response of intramuscularly injected vaccines. We conclude that our thermostable orally administered eVLP vaccine could be a valuable addition to the current arsenal against SARS-CoV-2, in a stand-alone prime-boost vaccination strategy or as a boost for existing vaccines.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Coronavirus M Proteins/immunology , Giardia lamblia/immunology , Intestinal Mucosa/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antigens, Protozoan/immunology , Cricetinae , Humans , Immunity , Immunization, Secondary , Immunoglobulin A/metabolism , Male , Mice , Mice, Inbred BALB C , Temperature , Vaccine Potency , Vaccines, Virus-Like Particle
5.
PLoS One ; 16(7): e0254498, 2021.
Article in English | MEDLINE | ID: covidwho-1325435

ABSTRACT

To screen for additional vaccine candidate antigens of Plasmodium pre-erythrocytic stages, fourteen P. falciparum proteins were selected based on expression in sporozoites or their role in establishment of hepatocyte infection. For preclinical evaluation of immunogenicity of these proteins in mice, chimeric P. berghei sporozoites were created that express the P. falciparum proteins in sporozoites as an additional copy gene under control of the uis4 gene promoter. All fourteen chimeric parasites produced sporozoites but sporozoites of eight lines failed to establish a liver infection, indicating a negative impact of these P. falciparum proteins on sporozoite infectivity. Immunogenicity of the other six proteins (SPELD, ETRAMP10.3, SIAP2, SPATR, HT, RPL3) was analyzed by immunization of inbred BALB/c and outbred CD-1 mice with viral-vectored (ChAd63 or ChAdOx1, MVA) vaccines, followed by challenge with chimeric sporozoites. Protective immunogenicity was determined by analyzing parasite liver load and prepatent period of blood stage infection after challenge. Of the six proteins only SPELD immunized mice showed partial protection. We discuss both the low protective immunogenicity of these proteins in the chimeric rodent malaria challenge model and the negative effect on P. berghei sporozoite infectivity of several P. falciparum proteins expressed in the chimeric sporozoites.


Subject(s)
Malaria, Falciparum/parasitology , Plasmodium falciparum/pathogenicity , Animals , Antibodies, Protozoan/immunology , Antibodies, Protozoan/metabolism , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Erythrocytes/metabolism , Female , Malaria Vaccines/therapeutic use , Malaria, Falciparum/genetics , Malaria, Falciparum/immunology , Mice , Mice, Inbred BALB C , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Ribosomal Protein L3 , Sporozoites/pathogenicity
6.
Int J Infect Dis ; 108: 137-144, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1272471

ABSTRACT

OBJECTIVES: Our objective was to systematically investigate false-negative histidine-rich protein 2 rapid diagnostic tests (HRP2-RDT) in imported Plasmodium falciparum malaria cases from travelers to the UK and the Republic of Ireland (RoI). METHODS: Five imported malaria cases in travellers returning to the UK and RoI from East Africa were reported to the PHE Malaria Reference Laboratory as negative according to histidine-rich protein (HRP2)-RDT. The cases were systematically investigated using microscopic, RDT, molecular, genomic, and in in vitro approaches. RESULTS: In each case, HRP2-RDT was negative, whereas microscopy confirmed the presence of P. falciparum. Further analysis revealed that the genes encoding HRP2 and HRP3 were deleted in three of the five cases. Whole-genome sequencing in one of these isolates confirmed deletions in P. falciparum chromosomes 8 and 13. Our study produced evidence that the fourth case, which had high parasitemia at clinical presentation, was a rare example of antigen saturation ('prozone-like effect'), leading to a false negative in the HRP2-RDT, while the fifth case was due to low parasitemia. CONCLUSIONS: False-negative HRP2-RDT results with P. falciparum are concerning. Our findings emphasise the necessity of supporting the interpretation of RDT results with microscopy, in conjunction with clinical observations, and sets out a systematic approach to identifying parasites carrying pfhrp2 and pfhrp3 deletions.


Subject(s)
Malaria, Falciparum , Parasites , Animals , Antigens, Protozoan/genetics , Diagnostic Tests, Routine , Gene Deletion , Humans , Ireland/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , United Kingdom/epidemiology
7.
Vaccine ; 39(4): 687-698, 2021 01 22.
Article in English | MEDLINE | ID: covidwho-1023765

ABSTRACT

BACKGROUND: The evaluation of immune responses to RTS,S/AS01 has traditionally focused on immunoglobulin (Ig) G antibodies that are only moderately associated with protection. The role of other antibody isotypes that could also contribute to vaccine efficacy remains unclear. Here we investigated whether RTS,S/AS01E elicits antigen-specific serum IgA antibodies to the vaccine and other malaria antigens, and we explored their association with protection. METHODS: Ninety-five children (age 5-17 months old at first vaccination) from the RTS,S/AS01E phase 3 clinical trial who received 3 doses of RTS,S/AS01E or a comparator vaccine were selected for IgA quantification 1 month post primary immunization. Two sites with different malaria transmission intensities (MTI) and clinical malaria cases and controls, were included. Measurements of IgA against different constructs of the circumsporozoite protein (CSP) vaccine antigen and 16 vaccine-unrelated Plasmodium falciparum antigens were performed using a quantitative suspension array assay. RESULTS: RTS,S vaccination induced a 1.2 to 2-fold increase in levels of serum/plasma IgA antibodies to all CSP constructs, which was not observed upon immunization with a comparator vaccine. The IgA response against 13 out of 16 vaccine-unrelated P. falciparum antigens also increased after vaccination, and levels were higher in recipients of RTS,S than in comparators. IgA levels to malaria antigens before vaccination were more elevated in the high MTI than the low MTI site. No statistically significant association of IgA with protection was found in exploratory analyses. CONCLUSIONS: RTS,S/AS01E induces IgA responses in peripheral blood against CSP vaccine antigens and other P. falciparum vaccine-unrelated antigens, similar to what we previously showed for IgG responses. Collectively, data warrant further investigation of the potential contribution of vaccine-induced IgA responses to efficacy and any possible interplay, either synergistic or antagonistic, with protective IgG, as identifying mediators of protection by RTS,S/AS01E immunization is necessary for the design of improved second-generation vaccines. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: NCT008666191.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Adolescent , Antibodies, Protozoan , Antigens, Protozoan , Child , Child, Preschool , Humans , Immunoglobulin A , Infant , Malaria/prevention & control , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Protozoan Proteins
8.
PLoS One ; 15(12): e0238010, 2020.
Article in English | MEDLINE | ID: covidwho-961459

ABSTRACT

Multiplexed bead-based assays that use Luminex® xMAP® technology have become popular for measuring antibodies against proteins of interest in many fields, including malaria and more recently SARS-CoV-2/COVID-19. There are currently two formats that are widely used: non-magnetic beads or magnetic beads. Data are lacking regarding the comparability of results obtained using these two types of beads, and for assays run on different instruments. Whilst non-magnetic beads can only be run on flow-based instruments (such as the Luminex® 100/200™ or Bio-Plex® 200), magnetic beads can be run on both these and the newer MAGPIX® instruments. In this study we utilized a panel of purified recombinant Plasmodium vivax proteins and samples from malaria-endemic areas to measure P. vivax-specific IgG responses using different combinations of beads and instruments. We directly compared: i) non-magnetic versus magnetic beads run on a Bio-Plex® 200, ii) magnetic beads run on the Bio-Plex® 200 versus MAGPIX® and iii) non-magnetic beads run on a Bio-Plex® 200 versus magnetic beads run on the MAGPIX®. We also performed an external comparison of our optimized assay. We observed that IgG antibody responses, measured against our panel of P. vivax proteins, were moderately-strongly correlated in all three of our comparisons (pearson r>0.5 for 18/19 proteins), however higher amounts of protein were required for coupling to magnetic beads. Our external comparison indicated that results generated in different laboratories using the same coupled beads are also highly comparable (pearson r>0.7), particularly if a reference standard curve is used.


Subject(s)
Cell Separation/methods , Immunoglobulin G/immunology , Immunomagnetic Separation/methods , Antigens, Protozoan/immunology , Child , Child, Preschool , Female , Humans , Magnetic Phenomena , Malaria/immunology , Malaria, Vivax/immunology , Male , Microspheres , Papua New Guinea/epidemiology , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Technology
9.
Am J Trop Med Hyg ; 103(2): 558-560, 2020 08.
Article in English | MEDLINE | ID: covidwho-608342

ABSTRACT

Rapid diagnostic tests (RDTs) play a critical role in malaria diagnosis and control. The emergence of Plasmodium falciparum parasites that can evade detection by RDTs threatens control and elimination efforts. These parasites lack or have altered genes encoding histidine-rich proteins (HRPs) 2 and 3, the antigens recognized by HRP2-based RDTs. Surveillance of such parasites is dependent on identifying false-negative RDT results among suspected malaria cases, a task made more challenging during the current pandemic because of the overlap of symptoms between malaria and COVID-19, particularly in areas of low malaria transmission. Here, we share our perspective on the emergence of P. falciparum parasites lacking HRP2 and HRP3, and the surveillance needed to identify them amid the COVID-19 pandemic.


Subject(s)
Coronavirus Infections/epidemiology , Diagnostic Tests, Routine/methods , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Pneumonia, Viral/epidemiology , Africa , Antigens, Protozoan/analysis , Betacoronavirus , COVID-19 , Humans , Malaria, Falciparum/epidemiology , Pandemics , Protozoan Proteins/analysis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL